skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akarsh Prabhakara, Diana Zhang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract—Robotic geo-fencing and surveillance systems require accurate monitoring of objects if/when they violate perimeter restrictions. In this paper, we seek a solution for depth imaging of such objects of interest at high accuracy (few tens of cm) over extended ranges (up to 300 meters) from a single vantage point, such as a pole mounted platform. Unfortunately, the rich literature in depth imaging using camera, lidar and radar in isolation struggles to meet these tight requirements in real-world conditions. This paper proposes Metamoran, a solution that explores long-range depth imaging of objects of interest by fusing the strengths of two complementary technologies: mmWave radar and camera. Unlike cameras, mmWave radars offer excellent cm-scale depth resolution even at very long ranges. However, their angular resolution is at least 10× worse than camera systems. Fusing these two modalities is natural, but in scenes with high clutter and at long ranges, radar reflections are weak and experience spurious artifacts. Metamoran’s core contribution is to leverage image segmentation and monocular depth estimation on camera images to help declutter radar and discover true object reflections.We perform a detailed evaluation of Metamoran’s depth imaging capabilities in 400 diverse scenarios. Our evaluation shows that Metamoran estimates the depth of static objects up to 90 m away and moving objects up to 305 m away and with a median error of 28 cm, an improvement of 13× over a naive radar+camera baseline and 23× compared to monocular depth estimation. 
    more » « less